Kinematically irreversible acinar flow: a departure from classical dispersive aerosol transport theories.
نویسندگان
چکیده
Current theories describe aerosol transport in the lung as a dispersive (diffusion-like) process, characterized by an effective diffusion coefficient in the context of reversible alveolar flow. Our recent experimental data, however, question the validity of these basic assumptions. In this study, we describe the behavior of fluid particles (or bolus) in a realistic, numerical, alveolated duct model with rhythmically expanding walls. We found acinar flow exhibiting multiple saddle points, characteristic of chaotic flow, resulting in substantial flow irreversibility. Computations of axial variance of bolus spreading indicate that the growth of the variance with respect to time is faster than linear, a finding inconsistent with dispersion theory. Lateral behavior of the bolus shows fine-scale, stretch-and-fold striations, exhibiting fractal-like patterns with a fractal dimension of 1.2, which compares well with the fractal dimension of 1.1 observed in our experimental studies performed with rat lungs. We conclude that kinematic irreversibility of acinar flow due to chaotic flow may be the dominant mechanism of aerosol transport deep in the lungs.
منابع مشابه
Kinematically irreversible flow and aerosol transport in the pulmonary acinus: a departure from classical dispersive transport
Current theories describe aerosol transport in the lung as a dispersive (diffusion-like) process, characterized by an effective diffusion coefficient, D eff , in the context of reversible alveolar flow. Our recent experimental data, however, question the validity of these basic assumptions. In this study, we described the behavior of fluid particles (or bolus) in a realistic numerical alveolate...
متن کاملChaotic mixing deep in the lung.
Our current understanding of the transport and deposition of aerosols (viruses, bacteria, air pollutants, aerosolized drugs) deep in the lung has been grounded in dispersive theories based on untested assumptions about the nature of acinar airflow fields. Traditionally, these have been taken to be simple and kinematically reversible. In this article, we apply the recently discovered fluid mecha...
متن کاملRevisiting pulmonary acinar particle transport: convection, sedimentation, diffusion, and their interplay.
It is largely acknowledged that inhaled particles ranging from 0.001 to 10 m are able to reach and deposit in the alveolated regions of the lungs. To date, however, the bulk of numerical studies have focused mainly on micrometer sized particles whose transport kinematics are governed by convection and sedimentation, thereby capturing only a small fraction of the wider range of aerosols leading ...
متن کاملAlveolar duct expansion greatly enhances aerosol deposition: a three-dimensional computational fluid dynamics study
Obtaining in vivo data of particle transport in the human lung is often difficult, if not impossible. Computational fluid dynamics (CFD) can provide detailed information on aerosol transport in realistic airway geometries. This paper provides a review of the key CFD studies of aerosol transport in the acinar region of the human lung. It also describes the first ever three-dimensional model of a...
متن کاملAerosol deposition characteristics in distal acinar airways under cyclic breathing conditions.
Although the major mechanisms of aerosol deposition in the lung are known, detailed quantitative data in anatomically realistic models are still lacking, especially in the acinar airways. In this study, an algorithm was developed to build multigenerational three-dimensional models of alveolated airways with arbitrary bifurcation angles and spherical alveolar shape. Using computational fluid dyn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 92 2 شماره
صفحات -
تاریخ انتشار 2002